
oh haiiiii CCLab!!1!!!!!
using objects and addons in

OpenFrameworks

liz_rutledge
dec 4, 2012

about me

lizDT

creative coding

web development

visual design

data visualization

=

liznow

UI design

data visualization

web development
[front-end]

and soon...Disney!

=

Processing
vs.

OpenFrameworks

quick and easy to get up and running

great documentation and helpful community

more control over system functions (lower-level)

not as processor-intensive “pound for pound”
(faster and won’t turn your laptop into a frying pan)

tons of crazy addons

Processing

OpenFrameworks

small differences that
can create big headaches:

multiple file types
(.h and .cpp)

file structure is CRAZY critical
a place for everything and everything damn well BETTER
be in its place

testApp::setup() things you need to specify
ofSetVerticalSync(TRUE);
ofSetFrameRate(30);
ofEnableAlphaBlending();
ofEnableSmoothing();

it’s even more important
to watch out for these

little “gotchas” when you
start using things like
objects and addons!

objects

efficiency AND consistency
condense hundreds of lines of code and create consistency across
entire groups of objects

modularity [reduce, reuse, recycle!]
allows you to reuse objects across multiple unique projects, or adapt
objects from other open source projects to your own project

entities with a mind of their own
can create rules that allow your objects to interact with each other
without your active involvement
(think particle systems!)

why are objects so important
in OpenFrameworks?

yayyy examples!!!

making a class [and how to get all those
files to talk to each other]:

each class gets TWO files
(one .cpp and one .h needed per class)

each .cpp files ONLY links to its matching header file
#include “className.h” or “#include “testApp.h”

ALL .h files need to link to the ofMain header file AND
include either #pragma once or all that #infdef crap
#include “ofMain.h”

testApp.h needs to ALSO include the header file of any
included classes (same goes for any type of parent class)
#include “className.h”

making a class: annoying details you
CAN’T forget to do

header files need to have a conditional header to protect
against loading the same classes more than once.

if you’re in testApp.h, then a “#pragma once” will do.
#pragma once

if you’re in className.h, then use the following:
#ifndef CLASSNAME_H

#define CLASSNAME_H

#include “ofMain.h”

[...rest of your class code...]

#endif

readyyyy...go!

addons

addons extend the core functionality of the
larger OpenFrameworks library by “adding on”
pre-bundled collections of libraries

these can contain just one class, a system of classes, or can even
contain unrelated C++ libraries that are bundled together with
a class that makes it easier to access that functionality through
OpenFrameworks. Usually they’ll even have an example project to
work from!

standing on the shoulders of [open-source] giants
using addons lets you get to work on your killer concept instead
of spending time figuring out how to (for example) access your
computer’s microphone. The whole point of the oF community is to
make cool shit while helping other people make cool shit.

That’s why they’re there!

yessss more examples!!

using an addon: setting it up

download (and unzip) the addon from the oF site and rename
the folder to fit the ofxAddonName convention
this will simply mean deleting the author’s name before the first hyphen
and deleting any other weird verion number type stuff on the other side
of the second hyphen

from the Finder, move (or copy) any example files from inside
the addon folder into the apps folder on the same level as
your other project folders
this means the example folder you’re dropping will end up in another
directory that is inside the apps directory

if you’re adding to an existing project, drop the folder into
your addons folder from inside your project file
nothing fancy here. Just make sure you can see it!

using an addon: tying it into your project

open the example to see how they’re making use of the
addon’s functionality
from the example file, you’ll be able to see how the files are linked, and
how different types of functionality are achieved. If you haven’t started
your project yet, you can even duplicate the example and start from
there. Otherwise, you’ll want to use it as a reference.

link to the addon files from the testApp.h header file so that
it knows where to find any function calls to those libraries
if you started from the example, this will be done for you. If not, then
include:

#include “ofxAddonName.h”

at the top of your testApp.h right along with #include “ofMain.h” and any
other classes you may be including.

heeeere we go!

liz_rutledge
esrutledge@gmail.com

http://lizrutledge.com

thanks!!!

