
creativity
& computation
lab
week 14 || intro to openFrameworks

review
WHERE WE HAVE BEEN

What we have done:
Midterm presentations!
// Woohoo!

agenda
WHERE WE ARE GOING

What’s on for today:
Finish presentations
// keeping strict time!
oF vs. Processing
// what happens behind the scenes
Install Xcode/Code::Blocks and openFrameworks
// smoothly, I hope
Structure of oF
// more files than we’re used to, but we will like this
Creating an app
// FUN!

WHAT IS IT AGAIN?

programming

We all know that code is
essentially a series of
instructions we write to
tell the computer what
to do.
//Remember our tooth
brushing example?

COMPILERS, LINKERS, AND LOADERS, O MY!

how it works

Code
you’ve
written

Instructions
for the
computer

Executable program
(.exe, .app, etc)

?
Compiler

+
Linker

+
Loader

Framework
Both oF and Processing are
made up of base/existing
classes

Processing is actually an
engine running / extending
a Base Class

When you write draw() and
setup() functions, you are
re-defining the draw() and
setup() functions that are
in the Processing base
class.

processing oF

Framework
Both oF and Processing are
made up of base/existing
classes

Processing is actually an
engine running / extending
a Base Class

When you write draw() and
setup() functions, you are
re-defining the draw() and
setup() functions that are
in the Processing base
class.

OpenFrameworks is also
extending a series of
existing classes, but it
makes it more obvious that
it's doing so.

processing oF

Framework
Both oF and Processing are
made up of base/existing
classes

processing oF

Framework
Both oF and Processing are
made up of base/existing
classes

processing oF

Framework
Both oF and Processing are
made up of base/existing
classes

processing oF

Framework
Both oF and Processing are
made up of base/existing
classes

Compiling

processing oF

Framework
Both oF and Processing are
made up of base/existing
classes

Compiling
In Java, each time you
compile, your entire
program is run through
and changed into byte
code.

Then when you run your
program, a Java
interpreter does runtime
compilation.

processing oF

Framework
Both oF and Processing are
made up of base/existing
classes

Compiling
In Java, each time you
compile, your entire
program is run through
and changed into byte
code.

Then when you run your
program, a Java
interpreter does runtime
compilation.

The compiler:
(1) goes through all your
#include statements and
copy/pastes chunks of your
code to create one file.

(2) parses the code to make
sure it makes sense

(3) translates the code into
Assembly, a low-level
language, and creates file
objects from that

(4) links Assembly objects
together into a .app file

processing oF

Framework
Both oF and Processing are
made up of base/existing
classes

Compiling
In Java, each time you
compile, your entire
program is run through
and changed into byte
code.

Then when you run your
program, a Java
interpreter does runtime
compilation.

The compiler:
(1) goes through all your
#include statements and
copy/pastes chunks of your
code to create one file.

(2) parses the code to make
sure it makes sense

(3) translates the code into
Assembly, a low-level
language, and creates file
objects from that

(4) links Assembly objects
together into a .app file

processing oF

Framework
Both oF and Processing are
made up of base/existing
classes

Compiling
In Java, each time you
compile, your entire
program is run through
and changed into byte
code.

Then when you run your
program, a Java
interpreter does runtime
compilation.

The compiler:
(1) goes through all your
#include statements and
copy/pastes chunks of your
code to create one file.

(2) parses the code to make
sure it makes sense

(3) translates the code into
Assembly, a low-level
language, and creates file
objects from that

(4) links Assembly objects
together into a .app file

processing oF

Framework
Both oF and Processing are
made up of base/existing
classes

Compiling
In Java, each time you
compile, your entire
program is run through
and changed into byte
code.

Then when you run your
program, a Java
interpreter does runtime
compilation.

The compiler:
(1) goes through all your
#include statements and
copy/pastes chunks of your
code to create one file.

(2) parses the code to make
sure it makes sense

(3) translates the code into
Assembly, a low-level
language, and creates file
objects from that

(4) links Assembly objects
together into a .app file

processing oF

Framework
Both oF and Processing are
made up of base/existing
classes

Compiling

processing oF

So basically,

Framework
Both oF and Processing are
made up of base/existing
classes

Compiling

In Java, the compiler
rebuilds everything from
scratch each time it runs.

processing oF

So basically,

Framework
Both oF and Processing are
made up of base/existing
classes

Compiling

In Java, the compiler
rebuilds everything from
scratch each time it runs.

In oF, the compiler only
needs to read /link things
that have changed from
build to build

processing oF

So basically,

SO WHAT DOES THIS MEAN FOR US?

how it works

Code
you’ve
written

Instructions
for the
computer

Executable program
(.exe, .app, etc)

?
Compiler

+
Linker

+
Loader

Processing and Arduino have their own IDE
(Interactive Development Environment)

SO WHAT DOES THIS MEAN FOR US?

how it works

Instructions
for the
computer

Executable program
(.exe, .app, etc)

openFrameworks...not so much

SO WHAT DOES THIS MEAN FOR US?

how it works

Instructions
for the
computer

Executable program
(.exe, .app, etc)

Mac = Xcode 3 for 10.6
 Xcode 4 for above

PC/Linux = Code::Blocks
 Visual Studio

openFrameworks...not so much

ALL TOGETHER NOW

install

This can be a sticky process, so we are
gonna do it together.

Install Xcode or Code::Blocks first
//Link
//Link

Download openFrameworks
//Link to download page

STRUCTURE OF OPENFRAMEWORKS

the need to knows

1) How to use an IDE
//RE: file structure

2) How to write C++ code
//RE: how to adapt others’ code and reference the
interwebs

3) How to use oF libraries
//Been there, done that. Twice. But more on this next
class.

There are three main things you need to know
to learn oF:

STRUCTURE OF OPENFRAMEWORKS

folders

openFrameworks

STRUCTURE OF OPENFRAMEWORKS

folders

openFrameworks

addons

apps

examples

libs

ROOT FOLDER

Adding piecemeal functionality
and fun stuff to an app.

Where you store your apps. More
on this in a sec.

Self explanatory.

Where your libraries live, as well as
the oF core.

STRUCTURE OF OPENFRAMEWORKS

folders

openFrameworks

addons

myApps
apps

examples

libs

WORKSPACESROOT FOLDER

Contains your projects

STRUCTURE OF OPENFRAMEWORKS

folders

openFrameworks

addons

myApps
apps

examples

libs

myProj_1

myProj_2

myProj_3

WORKSPACES PROJECTSROOT FOLDER

Contains folders
for individual
projects.

MUST be inside a
workspace in order
to compile!!

STRUCTURE OF OPENFRAMEWORKS

folders

openFrameworks

addons

myApps
apps

examples

libs

myProj_1

myProj_2

myProj_3

bin

WORKSPACES PROJECTSROOT FOLDER A PROJECT

src

.xcodeproj

main.cpp
testApp.cpp
testApp.h

STRUCTURE OF OPENFRAMEWORKS

example time

Open the graphicsExample.

Click Build and Run.

Ta daaaaa!!

STRUCTURE OF OPENFRAMEWORKS

files

In oF you have 3 files instead of one, as in
Processing or Arduino.

Let’s use the old recipe analogy to
understand why.

testApp.hmain.cpp testApp.cpp

FILE STRUCTURE

pumpkin pie
Ingredients
1 (8-ounce) package cream cheese, softened
2 cups canned pumpkin, mashed
1 cup sugar
1/4 teaspoon salt
1 egg plus 2 egg yolks, slightly beaten
1 cup half-and-half
1/4 cup (1/2 stick) melted butter
1 teaspoon vanilla extract
1/2 teaspoon ground cinnamon
1/4 teaspoon ground ginger, optional
1 piece pre-made pie dough
Whipped cream, for topping

Directions
Preheat the oven to 350 degrees F.
Place 1 piece of pre-made pie dough down into a (9-inch) pie pan and press down along the bottom and all sides.
Pinch and crimp the edges together to make a pretty pattern. Put the pie shell back into the freezer for 1 hour to firm
up. Fit a piece of aluminum foil to cover the inside of the shell completely. Fill the shell up to the edges with pie
weights or dried beans (about 2 pounds) and place it in the oven. Bake for 10 minutes, remove the foil and pie weights
and bake for another 10 minutes or until the crust is dried out and beginning to color.
For the filling, in a large mixing bowl, beat the cream cheese with a hand mixer. Add the pumpkin and beat until
combined. Add the sugar and salt, and beat until combined. Add the eggs mixed with the yolks, half-and-half, and
melted butter, and beat until combined. Finally, add the vanilla, cinnamon, and ginger, if using, and beat until
incorporated.
Pour the filling into the warm prepared pie crust and bake for 50 minutes, or until the center is set. Place the pie on a
wire rack and cool to room temperature. Cut into slices and top each piece with a generous amount of whipped
cream.

helloWorld.pde

FILE STRUCTURE

pumpkin pie
Ingredients
1 (8-ounce) package cream cheese, softened
2 cups canned pumpkin, mashed
1 cup sugar
1/4 teaspoon salt
1 egg plus 2 egg yolks, slightly beaten
1 cup half-and-half
1/4 cup (1/2 stick) melted butter
1 teaspoon vanilla extract
1/2 teaspoon ground cinnamon
1/4 teaspoon ground ginger, optional
1 piece pre-made pie dough
Whipped cream, for topping

Directions
Preheat the oven to 350 degrees F.
Place 1 piece of pre-made pie dough down into a (9-
inch) pie pan and press down along the bottom and all
sides. Pinch and crimp the edges together to make a
pretty pattern. Put the pie shell back into the freezer for
1 hour to firm up. Fit a piece of aluminum foil to cover
the inside of the shell completely. Fill the shell up to the
edges with pie weights or dried beans (about 2 pounds)
and place it in the oven. Bake for 10 minutes, remove
the foil and pie weights and bake for another 10 minutes
or until the crust is dried out and beginning to color.
For the filling, in a large mixing bowl, beat the cream
cheese with a hand mixer. Add the pumpkin and beat
until combined. Add the sugar and salt, and beat until
combined. Add the eggs mixed with the yolks, half-and-
half, and melted butter, and beat until combined.
Finally, add the vanilla, cinnamon, and ginger, if using,
and beat until incorporated.
Pour the filling into the warm prepared pie crust and
bake for 50 minutes, or until the center is set. Place the
pie on a wire rack and cool to room temperature. Cut
into slices and top each piece with a generous amount
of whipped cream.

testApp.cpp

testApp.h

FILE STRUCTURE

main.cpp

Where the program
starts

• Sets your
screen size

• Starts off an
infinite loop
which runs your
program

main.cpp

FILE STRUCTURE

main.cpp

FILE STRUCTURE

testApp.h

Where the program
starts

• Sets your
screen size

• Starts off an
infinite loop
which runs your
program

main.cpp

This is your header
file, or ingredients list.

• DECLARE all
global variables
and functions
declared here

• Similar to
declaring all global
variables at the
top of your
processing sketch

main.cpptestApp.h

FILE STRUCTURE

testApp.h

Where the program
starts

• Sets your
screen size

• Starts off an
infinite loop
which runs your
program

main.cpp

This is your header
file, or ingredients list.

• DECLARE all
global variables
and functions
declared here

• Similar to
declaring all global
variables at the
top of your
processing sketch

main.cpptestApp.h
Other things that go in here:
//For later reference

• Preprocessor statements
there to prevent multiple
header definitions

• Include statements to
other classes

• Class extension
statements

• Variables local to the class
• Prototypes / declarations

of any functions to be
contained in the class

• Security settings of these
functions and variables
(e.g. public, private,
protected, etc).

FILE STRUCTURE

testApp.h

FILE STRUCTURE

testApp.cpp

Where the program
starts

• Sets your
screen size

• Starts off an
infinite loop
which runs your
program

main.cpp

This is your header
file, or ingredients list.

• DECLARE all
global variables
and functions
declared here

• Similar to
declaring all global
variables at the
top of your
processing sketch

testApp.h

Where your functions
live (the directions)

• Includes all the
functions we are
familiar with: setup
(), draw(), etc

• An include
statement that
references the .h
file

• All of the code to
fill in the function
prototypes.

main.cpptestApp.cpp

FILE STRUCTURE

testApp.cpp

ACTIONIZE

create an app

Let’s walk through the process of creating an
app.

