creativity
& computation

lab

week 14 || intro to openFrameworks

review

WHERE WE HAVE BEEN

What we have done:

Midterm presentations!

agenda

WHERE WE ARE GOING

What's on for today:

Finish presentations

OF vs. Processing

Install Xcode/Code::Blocks and openFrameworks
Structure of oF

Creating an app

programming

WHAT IS IT AGAIN?

We all know that code is
essentially a series of
Instructions we write to
tell the computer what
to do.

how It wOorks

COMPILERS, LINKERS, AND LOADERS, O MY!

COde _ﬁ ? __# Instructions
youve : for the
written , computer
Compiler
o Executable program
Linker (.exe, .app, etc)
+

Loader

Framework

Both oF and Processing are
made up of base/existing
classes

Processing is actually an
engine running / extending
a Base Class

When you write draw() and
setup() functions, you are
re-defining the draw() and
setup() functions that are
in the Processing base
class.

Processing is actually an
engine running / extending
a Base Class

When you write draw() and
setup() functions, you are
re-defining the draw() and
setup() functions that are
in the Processing base
class.

Both oF and Processing are
made up of base/existing
classes

OpenFrameworksis also
extending a series of
existing classes, but it
makes it more obvious that
it's doing so.

Framework

Both oF and Processing are

made up of base/existing
classes

Spaceshipl{

Spaceship(int xPos, yPos)
{1
| createShip()
g i
' moveShip()
{ }

i

Framework

Both oF and Processing are
made up of base/existing
classes

00 BEEH

sketch_nov06a §
la Spaceshipl

Spaceship(int xPos, yPos)

{}
| createShip()

g i
| moveShip()

{ }
|

00 BEA

sketch_nov0ba §
SpaceshipFleet =t Spaceship{

id moveShip()
{ }

Framework

Both oF and Processing are
made up of base/existing
classes

°° -nn [sravoaso] e) cleanExample sr¢ © h|testApp.h ' No Selection

#¥pragma once

sketch novD6a § +
spaceshipi{)) ‘
#include "ofMain.h"
Spaceship(P
{ } class testApp : public
~reateShip(d public:
{] - void setup();
il b A void update();

void draw();

Crnrachin

Framework

Both oF and Processing are
made up of base/existing
classes

Framework

Both oF and Processing are
made up of base/existing
classes

In Java, each time you
compile, your entire
program is run through
and changed into byte
code.

Then when you run your
program, a Java
interpreter does runtime
compilation.

In Java, each time you
compile, your entire
program is run through
and changed into byte
code.

Then when you run your
program, a Java
interpreter does runtime
compilation.

Framework

Both oF and Processing are
made up of base/existing

classes

The compiler:

(1) goes through all your
#include statements and
copy/pastes chunks of your
code to create onefile.

In Java, each time you
compile, your entire
program is run through
and changed into byte
code.

Then when you run your
program, a Java
interpreter does runtime
compilation.

Framework

Both oF and Processing are
made up of base/existing

classes

The compiler:

(1) goes through all your
#include statements and
copy/pastes chunks of your
code to create onefile.

(2) parses the code to make
sure it makes sense

In Java, each time you
compile, your entire
program is run through
and changed into byte
code.

Then when you run your
program, a Java
interpreter does runtime
compilation.

Framework

Both oF and Processing are
made up of base/existing

classes

The compiler:

(1) goes through all your
#include statements and
copy/pastes chunks of your
code to create onefile.

(2) parses the code to make
sure it makes sense

(3) translates the code into
Assembly, a low-level
language, and creates file
objects from that

In Java, each time you
compile, your entire
program is run through
and changed into byte
code.

Then when you run your
program, a Java
interpreter does runtime
compilation.

Framework

Both oF and Processing are
made up of base/existing

classes

The compiler:

(1) goes through all your
#include statements and
copy/pastes chunks of your
code to create onefile.

(2) parses the code to make
sure it makes sense

(3) translates the code into
Assembly, a low-level
language, and creates file
objects from that

(4) links Assembly objects
together into a .app file

Framework

Both oF and Processing are
made up of base/existing
classes

Compiling

vy

So basically,

Framework

Both oF and Processing are
made up of base/existing
classes

Compiling

In Java, the compiler

scratch each timeit runs. SO bas ICa I I\/,

rebuilds everything from

Framework

Both oF and Processing are
made up of base/existing
classes

Compiling

In Java, the compiler In oF, the compiler only
needs to read /link things

scratch each time it runs. SO bas ICa I I\/, that have changed from

rebuilds everything from
build to build

how It wOorks

SO WHAT DOES THIS MEAN FOR US?

Processing and Arduino have their own IDE
(Interactive Development Environment)

Code
you've

written ,
Compiler

+
Linker
.|.
Loader

Instructions
for the
computer

Executable program
(.exe, .app, etc)

how It wOorks

SO WHAT DOES THIS MEAN FOR US?

openFrameworks...not so much

Instructions
for the
computer

Executable program
(.exe, .app, etc)

how It wOorks

SO WHAT DOES THIS MEAN FOR US?

openFrameworks...not so much

Mac = Xcode 3 for10.6
Xcode 4 for above

Instructions
for the
computer

PC/Linux = Code::Blocks
Visual Studio

Executable program
(.exe, .app, etc)

iInstall

ALL TOGETHER NOW

This can be a sticky process, so we are
gonna do it together.

Install Xcode or Code::Blocks first

Download openFrameworks

the need to knows

STRUCTURE OF OPENFRAMEWORKS

There are three main things you need to know
tolearn oF:

1) How to use an IDE

2) How to write C++ code

3) How to use oF libraries

folders

STRUCTURE OF OPENFRAMEWORKS

openFrameworks

folders

STRUCTURE OF OPENFRAMEWORKS

ROOT FOLDER

Adding piecemeal functionality
and fun stuff to an app.

openFrameworks Where you store your apps. More

on thisin asec.

Self explanatory.

examples

Where your libraries live, as well as
the oF core.

folders

STRUCTURE OF OPENFRAMEWORKS

ROOT FOLDER WORKSPACES

openFrameworks
Contains your projects

examples

-
-
-
.

libs

folders

STRUCTURE OF OPENFRAMEWORKS

ROOT FOLDER WORKSPACES PROJECTS

openFrameworks Contains folders

for individual
projects.

MUST beinside a
workspace in order
to compile!!

examples

-
-
-
.

libs

folders

STRUCTURE OF OPENFRAMEWORKS

ROOT FOLDER WORKSPACES PROJECTS A PROJECT

o -E-n

.xcodeproj

main.cpp
testApp.cpp
SIAON testApp.h

openFrameworks

examples

example time

STRUCTURE OF OPENFRAMEWORKS

Open the graphicsExample.
Click Build and Run.

Ta daaaaa!!

files

STRUCTURE OF OPENFRAMEWORKS

In oF you have 3 files instead of one, as In
Processing or Arduino.

testApp.h testApp.cpp

Let’s use the old recipe analogy to
understand why.

pumpkin ple
FILE STRUCTURE helloWorld.pde

Ingredients

1(8-ounce) package cream cheese, softened
2 cups canned pumpkin, mashed

1 cup sugar

1/4 teaspoon salt

1egg plus 2 egg yolks, slightly beaten
1 cup half-and-half

1/4 cup (1/2 stick) melted butter
1teaspoon vanilla extract

1/2 teaspoon ground cinnamon

1/4 teaspoon ground ginger, optional
1 piece pre-made pie dough
Whipped cream, for topping

Directions

Preheat the oven to 350 degrees F.

Place 1 piece of pre-made pie dough down into a (9-inch) pie pan and press down along the bottom and all sides.
Pinch and crimp the edges together to make a pretty pattern. Put the pie shell back into the freezer for 1 hour to firm
up. Fit a piece of aluminum foil to cover the inside of the shell completely. Fill the shell up to the edges with pie
weights or dried beans (about 2 pounds) and place it in the oven. Bake for 10 minutes, remove the foil and pie weights
and bake for another 10 minutes or until the crust is dried out and beginning to color.

For the filling, in a large mixing bowl, beat the cream cheese with a hand mixer. Add the pumpkin and beat until
combined. Add the sugar and salt, and beat until combined. Add the eggs mixed with the yolks, half-and-half, and
melted butter, and beat until combined. Finally, add the vanilla, cinnamon, and ginger, if using, and beat until
iIncorporated.

Pour the filling into the warm prepared pie crust and bake for 50 minutes, or until the center is set. Place the pie on a
wire rack and cool to room temperature. Cut into slices and top each piece with a generous amount of whipped
cream.

oumpkin pie

Ingredients

1(8-ounce) package cream cheese, softened
2 cups canned pumpkin, mashed

1 cup sugar

1/4 teaspoon salt

1egg plus 2 egg yolks, slightly beaten

1 cup half-and-half

1/4 cup (1/2 stick) melted butter
1teaspoon vanilla extract

1/2 teaspoon ground cinnamon

1/4 teaspoon ground ginger, optional
1 piece pre-made pie dough
Whipped cream, for topping

testApp.h

testApp.cpp

Directions

Preheat the oven to 350 degrees F.

Place 1 piece of pre-made pie dough down into a (9-
iInch) pie pan and press down along the bottom and all
sides. Pinch and crimp the edges together to make a
pretty pattern. Put the pie shell back into the freezer for
1Thour to firm up. Fit a piece of aluminum foil to cover
the inside of the shell completely. Fill the shell up to the
edges with pie weights or dried beans (about 2 pounds)
and place it in the oven. Bake for 10 minutes, remove
the foil and pie weights and bake for another 10 minutes
or until the crust is dried out and beginning to color.

For the filling, in a large mixing bowl, beat the cream
cheese with a hand mixer. Add the pumpkin and beat
until combined. Add the sugar and salt, and beat until
combined. Add the eggs mixed with the yolks, half-and-
half and melted butter, and beat until combined.
Finally, add the vanilla, cinnamon, and ginger, if using,
and beat until incorporated.

Pour the filling into the warm prepared pie crust and
bake for 50 minutes, or until the center is set. Place the
pie on a wire rack and cool to room temperature. Cut
into slices and top each piece with a generous amount
of whipped cream.

Main.cpp

FILESTRUCTURE

main.cpp

Where the program
starts

e Setsyour
screen size

e Startsoffan
infinite loop
which runs your
program

Groups & Files

v PN graphicsExample Lh

| openFrameworks-Info.pl

Project.xcconfig

v [src
=

ncpp

B m: .
[g StADD.Cpp
w| testApp.h

» [openFrameworks

» (] addons

» (] frameworks

(A graphicsExampleDebug.:

> ©) Targets
>/ Executables
v (3 Find Results
» [% Bookmarks
> scm

@ Project Symbols
» (@ Implementation Files
» (@ Interface Builder Files

< » dmaincpp:l 3

<No selected symbol> $

Q- String !

Zinclude "ofMain.h"
#include "testApp.h"
#include "ofAppGlutWindow.h"

//“....------....mmm“.-.-.-.-.---n-mmu--.---.

int main(){

ofAppGlutWindow window;

ofSetupOpenGL (&window, 1024,768, OF_WINDOW);

// this kicks off the running of my app
// can be OF_WINDOW or OF_FULLSCREEN

// pass in width and height too:
ofRunApp(new testApp());

// €<-——————- setup the GL context

testApp.h

FILESTRUCTURE

testApp.h

This is your header
file, or ingredients list.

 DECLARE all
global variables
and functions
declared here

e Similarto
declaring all global
variables at the
top of your
processing sketch

testApp.h

FILESTRUCTURE

This is your header
file, or ingredients list.

 DECLARE all
global variables
and functions
declared here

e Similarto
declaring all global
variables at the
top of your
processing sketch

Other things that go in here:

//For later reference

Preprocessor statements
there to prevent multiple
header definitions

Include statements to
other classes

Class extension
statements

Variables local to the class

Prototypes / declarations
of any functions to be
contained in the class

Security settings of these
functions and variables
(e.g. public, private,
protected, etc).

Q- String !

Groups & Files II>
v B graphicsExample B [testApp.h
% openFrameworks-Info.pl

Project.xcconfig
v [src
Eélnanxpp
{ testApp.cpp
B testApp.h
» [openFrameworks
» (] addons
» (] frameworks
(A graphicsExampleDebug.: < » dtestApp.hil 3 <No selected symbol> $
» @ Targets #pragma once
>/ Executables . o e
v Q Find Results #include "ofMain.h
» [l Bookmarks class testApp : public ofBaseApp{
> £ scMm .
@ Project Symbols public:
» (@ Implementation Files void setup()

» (@@l Interface Builder Files void update()
void draw();

void keyPressed(int key);

i void keyReleased(int key);

void mouseMoved(int x, int y);

void mouseDragged(int x, int y, int button);
void mousePressed(int x, int y, int button);
void mouseReleased(int x, int y, int button);
void windowResized(int w, int h);

void dragEvent(ofDragInfo draglnfo);

void gotMessage(ofMessage msg);

float counter;
bool bSmooth;

testApp.cpp

testApp.h

FILE STRUCTURE

testApp.cpp

Where the program This is your header Where your functions
starts file, or ingredients list. live (the directions)
e Setsyour « DECLARE I e Includesallthe
screen size global variables functions we are
. Starts offan and functions familiar with: setup
infinite loop declared here O, draw(), etc
which runs your e Similarto e Aninclude
program declaring all global statement that
variables at the references the .h
top of your file
processing sketch e Allof the code to

fill in the function
prototypes.

2]0]

Q- String !

Groups & Files I

v P graphicsExample B[54 testApp.cpp
| openFrameworks-Info.pl
Project.xcconfig
Vﬁ src
main.cpp
E testApp.cpp
w! testApp.h
» | openFrameworks
» (] addons
» (] frameworks
(4 graphicsExampleDebug.: < > dtestApp.cpp:17 ¢ [testApp:update) 3
» @ Targets #include “testApp.h"
> </ Executables
¥ (Find Results T A S S AP SIS o v
» [l Bookmarks void testApp::setup(){
» 3 scm counter = @; :
ofSetCircleResolution(50);
@ Project Symbols ofBackground(255, 255, 255) ;
> (@] Implementation Files bSmooth = false;
» (@ Interface Builder Files ofSetWindowTitle("graphics example");
) ofSetFrameRate(60); // if vertical sync is off, we can go a bit fast... this caps the framerate at 60fps.
(J] it ————— e —————is—

void testApp::update(){
counter = counter + 0.033f;

1/
void testApp::draw(){

/7 circles
//\let's draw a circle:
ofSetColor(255,130,0);

float radius = 5@ + 10 = cos{counter%2);
of Fill(); // draw "filled shapes"
ofCircle(100,408@, radius);

// now just an outline
ofNoFill();
ofSetHexColor(@xCCCCCC);
ofCircle(100,400,80);

// use the bitMap type

// note, this can be slow on some graphics cards

// because it is using glDrawPixels which varies in

// speed from system to system. try using ofTrueTypeFont
// if this bitMap type slows you down.
ofSetHexColor(@x@eeeen);

ofDrawBitmapString(“circle", 75,500);

create an app

ACTIONIZE

Let’s walk through the process of creating an
app.

